### Synthesis and antimicrobial activity of N-analogous corollosporines

Helfried Neumann,<sup>*a*</sup> Dirk Strübing,<sup>*a*</sup> Michael Lalk,<sup>*b*</sup> Stefan Klaus,<sup>*a*</sup> Sandra Hübner,<sup>*a*</sup> Anke Spannenberg,<sup>*a*</sup> Ulrike Lindequist<sup>*b*</sup> and Matthias Beller<sup>*a*</sup>

Received 1st December 2005, Accepted 3rd February 2006 First published as an Advance Article on the web 28th February 2006 DOI: 10.1039/b517101f

Corollosporine is an antimicrobial metabolite, which was isolated from the marine fungus *Corollospora maritima*. Owing to its basic 4-hydroxyphthalic acid anhydride structure, it has become an attractive target for a structure/activity relationship modelling of derived compounds with potential antibiotic activity. In this regard we report on the straightforward synthesis of hetero analogous corollosporines, which were easily prepared by a three-step reaction sequence, taking advantage of a novel multi-component reaction (AAD-reaction) and a subsequent aromatization/Grignard reaction protocol. Furthermore, the obtained products were tested in several biological assays to evaluate their antimicrobial activity.

#### Introduction

The synthesis and biological evaluation of potentially new antibiotic agents is undoubtedly an important topic in current chemical and medicinal research. Beside the design of more effective antibiotics with a lower range of unwanted side effects, this demand is especially forced by the ongoing multi-resistance of several bacterial strains against commonly used pharmaceuticals.

As a major approach, the discovery of suitable new leads is governed by the isolation of active compounds from biological resources. In a recent example, Lindequist and co-workers isolated the novel antibacterial agent corollosporine (Scheme 1) from the marine fungus *Corollospora maritima*, which was located on driftwood in the North Sea close to the island Helgoland (Germany).<sup>1</sup> Corollosporine  $[(\pm)-3-hexyl-3,7-dihydroxy-1(3H)$ isobenzofuran-1-one] is a typical member of antibiotics with phthalide activity against *Staphylococcus aureus* and *Bacillus subtilis*. Owing to the rather low isolated yield of corollosporine from the culture filtrate of *Corollospora maritima*, Mori and Ohzeki<sup>2</sup> developed different syntheses for the desired intermediate with acceptable overall yields.



Scheme 1 Structure of corollosporine.

As a consequence of the promising activity of corollosporine in antibacterial assays, we became interested in the synthesis of hetero (nitrogen) analogous compounds to study their antibiotic behaviour. For this purpose a short synthesis protocol was developed, taking advantage of a novel multicomponent reaction (MCR), which was recently discovered by some of us.<sup>7</sup>

In general, multicomponent reactions offer significant advantages over stepwise procedures with respect to environmental sustainability and atom efficiency.3 Therefore, a part of us has been interested in the development of transition metal-catalyzed three- and four-component coupling reactions, such as the hydroaminomethylation of olefins<sup>4</sup> and the amidocarbonylation of aldehydes.5 With respect to the latter work a three-component reaction was discovered,<sup>6</sup> in which amides react with aldehydes and dienophiles (AAD-reaction) to give a large variety of 1acylamino-2-cyclohexene derivatives in unprecedented efficiency. Based on a simple condensation reaction of amides and aldehydes, the underlying mechanism takes advantage of the formation of 1-(N-acylamino)-1,3-butadienes as key intermediates, which are subsequently converted by a Diels-Alder reaction with electrondeficient dienophiles to the corresponding products (Scheme 2).<sup>7</sup> By comparison with their purely 'carbonic' counterparts, the resulting heteroatom-substituted dienes not only exhibit higher reactivity in most cases but also give functionalized products which are useful for further synthetic manipulations.

In addition to our work, several other groups have also demonstrated the versatility of (isolated) functionalized 1,3-butadienes for Diels-Alder chemistry.8 In this regard, prominent examples include the preparation of pumiliotoxin,9 gephyrotoxin,10 dendrobine11 and tabersonine.12 Furthermore, we have additionally extended the synthetic scope of the AAD-reaction by a selective amide replacement through suitable electrophilic or nucleophilic reagents like isocyanates (IAD-reaction),13 orthoesters (ALAD-reaction) and anhydrides (ANAD-reaction).<sup>14</sup> Covering this range of substrates, we have actually synthesized more than 200 carbo- and hetero-cyclic compounds including highly substituted bicyclo[2.2.2]-oct-2-ene-,<sup>15</sup> enantiomerically pure cyclohexenol-,14 and cyclo-hexenylamino-,7e phthalic acid-,7d phenanthridone-,16 lactam-17 as well as aniline-derivatives.18 Taking account of the basic principle of the latter work, we also prepared a range of novel luminoles.<sup>19</sup> Here, an efficient threestep synthesis was elaborated, comprising first the AAD-reaction

<sup>&</sup>lt;sup>a</sup>Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany. E-mail: matthias.beller@ ifok-rostock.de

<sup>&</sup>lt;sup>b</sup>Institut für Pharmazie der Ernst-Moritz-Arndt-Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany. E-mail: lalk@uni-greifswald.de



Scheme 2 Schematic representation of the AAD-reaction.

of benzyl carbamate, various aldehydes and *N*-methyl maleimide (Scheme 3, step 1). Next, the obtained products were oxidized by Pd/C to give the corresponding 4-aminophthalimides (Scheme 3, step 2). Finally, a hydrazinolysis reaction afforded the desired luminoles (Scheme 3, step 3) in good yield.



Scheme 3 Use of 4-aminophthalimides as key substrates for the synthesis of luminoles and corollosporine analogues.

Obviously, there exists a structural analogy of 4-aminophthalimides with 4-hydroxyphthalic anhydride, the precursor to corollosporine. As a result of that, we report here on the synthesis of hetero analogous corollosporine derivatives, which are easily accessible by the conversion of 4-aminophthalimides or related structures with Grignard reagents (Scheme 3, step 4). With respect to the native structure of corollosporine, the obtained compounds are somewhat bioisosteric, differing only in the substitution of oxygen – towards nitrogen atoms. Additionally, antimicrobial and antifungal assays were accomplished to determine the potential antibiotic activity of all new derivatives.

#### **Results and discussion**

In a first set of experiments, we investigated the conversion of previously prepared *N*-methyl-4-aminophthalimide (1; Table 1) with different equivalents of hexylmagnesium bromide as a model reaction.<sup>20</sup> Thereby, the best conversion was observed using an excess of 3 equiv. hexylmagnesium bromide (Table 1, entry 3). In this case, the desired product (1a) was isolated in 62% yield. Interestingly, the initial application of 1 or 2 equiv. of Grignard reagent was accompanied with decreased product yields of 1a of less than 1% and 33%, respectively (Table 1, entries 1, 2).

We explain these results by the selective formation of a magnesium complex, which is formed initially in the presence of 2 equiv. of Grignard reagent. Owing to the lower electrophilic character of the vinylogous amide unit, the nucleophilic attack of the third equivalent of hexylmagnesium bromide is favoured for the opposite carbonyl group. In agreement with this proposal, a further conversion of 1a with hexylmagnesium bromide afforded no double alkylated product (Table 1, entry 5), and the starting material was isolated back. Not surprisingly, an increase of reaction temperature to 25 °C resulted in lower selectivity of the desired product 1a (Table 1, entry 4). Finally, we examined the reactivity and regioselectivity of the Grignard reaction of Nmethyl-4-acetamidophthalimide (2; Table 1, entry 6). Obviously, the corresponding magnesium complex cannot be formed in this case. Therefore, the regioselectivity even changed in favour of the unwanted isomer 2a (Table 1, entry 6; 2a/2b = 2:1).

For both the *N*-analogous corollosporine 1a and the 'wrong' regioisomer 2a we were able to obtain suitable crystals for X-ray analysis. In Scheme 4 the molecular structures obtained are shown.<sup>21</sup>

Using the optimized set of conditions for the model substrate **1a**, we prepared 22 differently substituted hetero analogous

| Entry | Educt                   | Grignard reagent (equiv.) | Conversion (%) | $T/^{\circ}C$ | Yield <sup>b</sup> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | Selectivity syn/anti      |
|-------|-------------------------|---------------------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|
| 1     | NH <sub>2</sub><br>N-   | 1                         | 3              | 0             | $H_2 O H_1 O H_2 $ | <1              | _                         |
| 2     | NH2 O<br>N-             | 2                         | 70             | 0             | $H_2 O + H_0 H_5 H_5 H_6 H_6 H_6 H_6 H_6 H_6 H_6 H_6 H_6 H_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33              | 1 : 6 <sup>¢</sup>        |
| 3     | NH <sub>2</sub> O<br>N- | 3                         | 100            | 0             | $H_2 O = H_1 O + H_2 $ | 62              | 1 : 6°                    |
| 4     | NH <sub>2</sub><br>N-   | 3                         | 100            | 25            | $H_2 O H_2 O H_3 $ | 50              | 1 : 4°                    |
| 5     | HO HO HO                | 3                         | _              | 0             | $H_2 O H_2 O H_3 $ | 80 <sup>e</sup> | _                         |
| 6     |                         | 2                         | 100            | 0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67              | 2 : 1 <sup><i>d</i></sup> |

Table 1 Orientation and selectivity of the Grignard reaction of N-methyl-4-aminophthalimide (1) with hexylmagnesium bromide"

<sup>*a*</sup> Reaction conditions: 0.5 mmol educt was dissolved in 5 mL THF and Grignard reagent was slowly added. The solution was warmed up within 1 h and quenched with 1 mL water. The solvent was removed and the residue was extracted with EtOAc (3 times). Then the extract was purified by chromatography. <sup>*b*</sup> Isolated yield. <sup>*c*</sup> Selectivity determined by <sup>1</sup>H NMR. <sup>*d*</sup> Selectivity determined by yield. <sup>*e*</sup> Recovered yield.

corollosporines with moderate to good yield (11–73%; Table 2, compounds **1a–18b**). To evaluate their antibiotic activity, all compounds were employed within agar diffusion assays to test their antibiotic activity against *Bacillus subtilis*, *Staphylococcus aureus* and *Escherichia coli*, respectively (Table 2). To our delight, the *N*-analogous corollosporine (**1a**) was found to be as active as the natural corollosporine against *Staphylococcus aureus* (inhibition zone: 10 mm; Table 2, entry 1) (data not shown). More surprisingly, the corresponding isomer (**1b**) revealed the same activity as well (inhibition zone: 10 mm; Table 2, entry 2).

Next, we examined the influence of different alkyl and aromatic moieties attached to the aromatic scaffold. With the exception of the dimethylated derivative (**3**), which also revealed activity against *Staphylococcus aureus* (inhibition zone: 10 mm; Table 2, entry 3), a diethyl-, diisopropyl-, or dibenzyl-substitution was found to be ineffective (Table 2, entries 4–6). This may be explained by a lower cell permeability of the test compounds or the lack of binding to target enzymes.

Our further examinations concentrated on the replacement of the amino group towards other substituents in diverse aromatic positions. A monochlorination of the aromatic scaffold led to compounds with stronger activity against the gram positive *Staphylococcus aureus*. For instance, the 7-chloro-substituted corollosporine derivate (8a) revealed good activity against S. aureus (inhibition zone: 13 mm; Table 2, entry 8), whereas the corresponding isomer (8b) displayed one of the highest activities (inhibition zone: 14 mm; Table 2, entry 9). In contrast to these results, a monochlorination in 5- or 6-position afforded compounds (9b,a, respectively) with a comparable activity against Staphylococcus aureus (inhibition zones: 13-14 mm; Table 2, entries 10-11), but no antimicrobial effect was found comprising strains of Bacillus subtilis and Escherichia coli. In another example, the dichlorinated compound (10) was found to be active against Staphylococcus aureus and Bacillus subtilis. Additionally, we tested the bioactivity of fluorinated corollosporine derivatives. Here, an inseparable mixture of isomers (11a,b) showed only weak antimicrobial activity. Moreover, the antimicrobial evaluation of the tetrafluorinated derivative (12) revealed no activity against all employed strains (Table 2, entry 14).

In addition, we examined the influence of different alkyl chains and aromatic substituents attached to the tertiary hydroxy group. It is important to note that neither chain-shortened, nor chainelongated derivatives displayed any activity against the tested bacterial strains (Table 2, entries 15–19). Furthermore, both isomers with attached *p*-tolyl substituents were found to be ineffective as well (Table 2, entries 20, 21). Consistently, the natural



**Scheme 4** Molecular structure of: (a) **1a**, and (b) **2a** (for both, the thermal ellipsoids correspond to the 30% probability level).

3-hexyl-3-hydroxy motif seems to have an essential influence on the antimicrobial activity.

In a second approach we investigated the minimal inhibitory concentration (MIC) of two chlorinated compounds. Compounds **8b** and **9b** showed activity according to the screening results with MIC values of 83.5 and 28.5  $\mu$ g mL<sup>-1</sup> against *Bacillus subtilis*. These experiments show that the antibacterial activity is concentrated on gram positive bacteria.

In summary, we have developed an easy and straightforward synthesis route to a variety of aza analogous corollosporines. Advantageously, the presence of the 4-amino group results in high regioselectivity of the final Grignard reaction.

Some of the obtained products revealed antibiotic activity, which is comparable to the natural product corollosporine. Here, the presence of a hexyl side chain represents an important feature for antimicrobial activity. Substitution in the aromatic moiety with chlorine results in an increase of the activity.

#### Experimental

#### Antimicrobial testing

**Antimicrobial screening.** The bacterial cultures were obtained from the ATCC.

Assay for antimicrobial activity: a modified disc diffusion method was used to determine the antimicrobial activity. A sterile filter disc of 6 mm diameter (B & D research) was impregnated with the test compounds. The paper disc was placed on the agar plate seeded with respective micro organisms. The plates were kept in the refrigerator at 4 °C for 4 h. The plates were then turned over to incubate overnight at 37 °C in an inverted position. At the end of the incubation period the clear zones of inhibition around the paper disc were measured. Negative control experiments were performed by using paper discs loaded with an equivalent volume of solvent, and positive control experiments were performed by the use of an equivalent amount of Ampicillin (in the case of *S. aureus* and *B. subtilis*) or Gentamicin (in the case of *E. coli*). The amount of the compounds tested during the experiments was 1000 nmol per paper disc. All experiments were done in triplicate.

### Determination of minimal inhibitory concentrations (MICs) of compounds by dilution method

**Sample preparation.** The compound (1 mg) was dissolved in 1 mL of DMSO and serially diluted with nutrient agar medium to obtain the final concentrations.

**Culture of microorganisms.** A column of 3 mL sterile broth was inoculated with about a pinhead size of respective bacteria and  $100 \,\mu$ L of the bacterial suspension was further inoculated into 10 mL of sterile broth. The final inoculated bacterial suspension was placed on an orbital shaker (175 rpm) and incubated overnight at 25 °C. For the test, the bacterial suspension was diluted in the ratio of 1 : 100.

Antibacterial assay. The minimal inhibitory concentration (MIC) was measured by the 10-fold serial broth dilution method. The assay was carried out in a 96-well tray. The wells of the first row of the tray (A1 to H1) were filled with 150  $\mu$ L of diluted test substances in duplicate. From the second to eleventh row (A2, H2 to A11, H11) the wells were first filled with 100  $\mu$ L of PBS (phosphate-buffered saline). Then 10  $\mu$ L of the test substance from the first row was pipetted out in a stepwise manner from left to right up to the eleventh row. Finally, 10  $\mu$ L of the diluted substance was discarded from the eleventh row. Each and every well from the row 1–11 was finally filled with 100  $\mu$ L of diluted bacterial suspension.

The wells A12–D12 were filled with 100  $\mu$ L PBS and 100  $\mu$ L bacterial suspension without test substance as control wells. The wells E12–G12 were filled with 100  $\mu$ L PBS and 100  $\mu$ L bacterial suspension without the test substance as control wells. The well H12 was kept empty for photometric blank. The plate was shaken carefully and then incubated for 16 h at 35 °C. After incubation, the absorbance was measured at 620 nm in a plate reader (Anthos HT-II). The MIC corresponds to the lowest concentration of the test compound that still produces bacterial growth inhibition. It was determined by spectrophotometry by measuring the turbidity of the inoculated liquid broth in the presence and absence of the test compound. The highest concentration of the test substance for the assay was 5000  $\mu$ g mL<sup>-1</sup> and lowest concentration

#### Chemical synthesis

THF was distilled from Na; furthermore, Grignard solutions were bought from Aldrich. *N*-Methyl-4-aminophthalimide derivatives

| Entry | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yield (%) | Bacillus subtilis ATCC 6051 | Staphylococcus aureus ATCC 6538 | Escherichia coli ATCC 11229 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|---------------------------------|-----------------------------|
| 1     | $H_2 \rightarrow H_1 \rightarrow H_2 \rightarrow H_1 \rightarrow H_2 \rightarrow H_2 \rightarrow H_1 \rightarrow H_2 \rightarrow H_2 \rightarrow H_1 \rightarrow H_2 $ | 62        | г                           | 10                              | r                           |
| 2     | NH <sub>2</sub> OH 5<br>N-<br>1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11        | r                           | 10                              | r                           |
| 3     | $H_2 O H_0 H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38        | r                           | 10                              | r                           |
| 4     | HO M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35        | r                           | r                               | r                           |
| 5     | NH2<br>HO M5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34        | г                           | T                               | r                           |
| 6     | $Bn + H_2 O +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45        | r                           | r                               | r                           |
| 7     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70        | 8                           | 11                              | 11                          |
| 8     | CI O<br>HO ME<br>8a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27        | r                           | 13                              | 10                          |
| 9     | N-<br>CI HO<br>8b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60        | 7                           | 14                              | 12                          |
| 10    | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34        | r                           | 14                              | r                           |
| 11    | cl Ho M5<br>9b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48        | r                           | 13                              | r                           |
| 12    | $CI \rightarrow CI \rightarrow HO \rightarrow S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44        | 12                          | 8                               | r                           |

 Table 2
 Results of the antimicrobial screening<sup>a</sup>

| Table 2 | (Contd.) |
|---------|----------|
|---------|----------|

| Entry | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yield (%)  | Bacillus subtilis ATCC 6051 | Staphylococcus aureus ATCC 6538 | Escherichia coli ATCC 11229 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------|---------------------------------|-----------------------------|
| 13    | HO HE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60 (1 : 2) | 8                           | r                               | 12                          |
|       | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                             |                                 |                             |
| 14    | F + HO + H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73         | r                           | r                               | r                           |
| 15    | $H_2 O + H_0 + H_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73         | r                           | r                               | r                           |
| 16    | $H_2 \rightarrow H_1 \rightarrow H_2 \rightarrow H_1 \rightarrow H_2 \rightarrow H_2 \rightarrow H_1 $ | 58         | r                           | r                               | r                           |
| 17    | $H^{2}_{HO} H^{0}_{HO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20         | r                           | r                               | r                           |
| 18    | $H_2 \xrightarrow{NH_2} H_0 \xrightarrow{N-} H_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30         | r                           | r                               | r                           |
| 19    | $H_2 O = H_0 H_0 H_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11         | r                           | r                               | r                           |
| 20    | NH <sub>2</sub> O<br>HO<br>HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29         | r                           | r                               | r                           |
| 21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22         | r                           | r                               | r                           |
|       | 18b<br>Ampicillin<br>Gentamicin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 17<br>n.t.                  | 15<br>n.t.                      | n.t.<br>12                  |

<sup>a</sup> Inhibition zones are stated in diameter (mm) without the diameter of the paper disc (6 mm); r = resistant; n.t. = not tested.

were prepared from the two-step MCR/oxidation sequence.<sup>18</sup> In the case of **9a**, **9b**, **10**, **11**, **12** the *N*-methylphthalimide precursors were synthesized from the corresponding phthalic acids,<sup>22</sup> which are commercially available from Aldrich. The precursors

of 8a, 8b were synthesized by a Sandmeyer reaction from 4-aminophthalimide.<sup>23</sup>

Silica gel column chromatography was performed with 230-400 mesh ASTM silica gel from Merck. Melting points were

recorded on a Galen III (Cambridge Instruments) and are uncorrected. IR spectra were recorded as KBr pellets on a Nicolet Magna 550. Mass spectra were obtained on AMD 402/3 of AMD Intectra (EI, 70 eV). NMR data were recorded on a Bruker ARX 400 with QNP probe head (<sup>1</sup>H, 400.13 MHz; <sup>13</sup>C, 100.61 MHz) at 25 °C.

#### General procedure for the synthesis of the $N\mbox{-}analogous$ corollos por ines

*N*-Methylphthalimide (0.5 mmol) was dissolved under an Ar atmosphere in 10 mL absolute THF and cooled to 0 °C. In the case of 4-aminophthalimide derivatives a three-fold excess of 2 M hexylmagnesium bromide (1.5 mmol) was slowly added. The solution becomes deep red and was warmed up in 2–3 h to ambient temperature. During this time the color of the solution changed to green/yellow. In the case of halide-containing phthalimides an equimolar amount of Grignard solution was used. After adding 1 mL water the solution became colorless and the solvent was removed under high vacuum. Water was added to the residue and extracted three times with ethyl acetate. The organic phase was dried with Na<sub>2</sub>SO<sub>4</sub>. After removing the solvent the remaining solid was purified by chromatography with heptane–EtOAc and crystallized from toluene if necessary.

# 7-Amino-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (1a)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.11. Yield: 62%. Mp: 129 °C. <sup>1</sup>**H** NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.19 (dd, J = 7.2and 7.9 Hz, 1H, *m*-CH-Ar), 6.61 (d, J = 7.1 Hz, 1H, CH-Ar), 6.57 (d, J = 8.1 Hz, 1H, CH-Ar), 6.03 (s, 1H, OH), 5.99 (s, 2H)NH<sub>2</sub>), 2.72 (s, 3H, NCH<sub>3</sub>), 1.88 (m, 2H, COHCH<sub>2</sub>), 1.20–1.05 (m, 6H,  $(CH_2)_3$ CH<sub>2</sub>Me), 0.78 (t, J = 6.8 Hz, 3H,  $(CH_2)_5$ Me), 0.84–  $0.73 (m, 1H, CH_2Me), 0.64-0.51 (m, 1H, CH_2Me).$ <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  168.0 (CO); 148.6, 145.8 and 112.4 (3 C); 132.7, 114.2 and 108.7 (3 CH); 89.3 (COH); 35.7, 31.0, 28.4, 23.0 and 21.9 (5 CH<sub>2</sub>); 22.4 and 13.8 (2 CH<sub>3</sub>). **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3470$  (s), 3349 (s), 3255 (m), 2936 (s), 2856 (m), 1664 (s), 1621 (s), 1607 (m), 1596 (m), 1482 (s), 1467 (m), 1433 (m), 1395 (m), 1361 (m), 1327 (m), 1228 (w), 1203 (w), 1127 (w), 1085 (m), 1034 (m), 1016 (m), 959 (w), 807 (m), 773 (m), 705 (m), 584 (w), 542 (w). **MS** (EI, 70 eV): m/z (%) = 262 (9) [M]<sup>+</sup>, 244 (38) [M -H<sub>2</sub>O]<sup>+</sup>, 187 (76), 177 (100), 162 (15), 118 (10), 91 (9), no other peaks >5%. **HR MS** (EI): calc. for  $C_{15}H_{22}N_2O_2$ : 262.16812; found: 262.16722 [M]+.

# 4-Amino-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (1b)

*R*<sub>f</sub> (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.08. Yield: 11%. Mp: 92– 95 °C. <sup>1</sup>**H** NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.19 (dd, *J* = 7.7 and 7.5 Hz, 1H, *m*-CH-Ar), 6.80 (d, *J* = 7.5 Hz, 1H, CH-Ar), 6.77 (d, *J* = 7.7 Hz, 1H, CH-Ar), 6.13 (s, 1H, OH), 5.13 (s, 2H, NH<sub>2</sub>), 2.75 (s, 3H, NCH<sub>3</sub>), 2.32–2.21 (m, 1H, COHCH<sub>2</sub>), 1.92–1.81 (m, 1H, COHCH<sub>2</sub>), 1.19–0.96 (m, 6H, (CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>Me), 0.76 (t, *J* = 6.8 Hz, 3H, (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>), 0.71–0.56 (m, 1H, CH<sub>2</sub>CH<sub>3</sub>), 0.51–0.36 (m, 1H, CH<sub>2</sub> CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  166.4 (CO); 143.2, 132.6 and 128.7 (3 C); 129.6, 117.8 and 109.7 (3 CH); 89.7 (COH); 32.2, 31.0, 28.2, 23.2 and 21.9 (5 CH<sub>2</sub>); 22.5 and 13.8 (2 CH<sub>3</sub>). **MS** (EI, 70 eV): m/z (%) = 262 (9) [M]<sup>+</sup>, 244 (38) [M - H<sub>2</sub>O]<sup>+</sup>, 187 (76), 177 (100), 162 (15), 118 (10), 91 (9) no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda$  = 3450 (s), 3347 (s), 3228 (m), 2956 (m), 2924 (s), 2856 (m), 1664 (s), 1634 (m), 1609 (m), 1490 (s), 1469 (m), 1432 (s), 1398 (m), 1353 (s), 1313 (m), 1085 (m), 1044 (m), 968 (w), 863 (w), 816 (w), 762 (m), 697 (w), 584 (w), 535 (w). **HR MS** (EI): calc. for C<sub>15</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub>: 262.16812; found: 262.16722 [M]<sup>+</sup>.

#### N-(2-Methyl-1,3-dioxoisoindolin-4-yl)acetamide (2)

*R*<sub>f</sub> (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.14. Yield: 86%. Mp: 149 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 9.64 (s, 1H, NH), 8.39 (d, *J* = 8.37 Hz, 1H, CH arom.), 7.72 (dd, *J* = 7.2 and 8.4 Hz, 1H, CH arom.), 7.50 (d, *J* = 7.2 Hz, 1H, CH arom.), 2.99 (s, 3H, NMe), 2.18 (s, 3H, Ac). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 169.1, 168.5 and 167.4 (3 CO); 136.0, 131.9 and 117.2 (3 C); 135.3, 125.3 and 117.7 (3 CH); 24.2 and 23.5 (2 CH<sub>3</sub>). MS (EI, 70 eV): *m/z* (%) = 218 (18) [M]<sup>+</sup>, 176 (100) [M − acetyl + 1] <sup>+</sup>, 132 (11), 119 (10), 91 (7), 69 (7), no other peaks of >5%. IR (KBr) cm<sup>-1</sup>: 1/λ = 3345 (m), 3084 (w), 2950 (w), 1761 (s), 1698 (s), 1621 (s), 1530 (s), 1478 (s), 1444 (s), 1419 (s), 1366 (m), 1294 (m), 1258 (m), 1238 (m), 1162 (w), 1036 (w), 1004 (m), 825 (m), 744 (s), 691 (m), 621 (w), 594 (w), 532 (m). HR MS (EI): calc. for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O<sub>3</sub>: 218.0686; found: 218.0679 [M<sup>+</sup>].

### *N*-(3-Hexyl-3-hydroxy-2-methyl-1-oxo-2,3-dihydro-1*H*-isoindol-4-yl)acetamide (2a)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 1 : 2): 0.13. Yield: 67%. Mp: 118– 120 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>): δ 8.84 (s, 1H, NH), 7.88 (d, J = 7.5 Hz, 1H, CH-Ar), 7.49-7.37 (m, 2H, CH-Ar), 6.58 (s, 10.5)1H, OH), 2.80 (s, 3H, NCH<sub>3</sub>), 2.13 (s, 3H, CH<sub>3</sub>CO), 2.26–2.09 (m, 1H, COHCH<sub>2</sub>), 2.03–1.92 (m, 1H, COHCH<sub>2</sub>), 1.18–0.98 (m, 6H,  $(CH_2)_3$ CH<sub>2</sub>Me), 0.75 (t, J = 6.9 Hz, 3H,  $(CH_2)_5$ CH<sub>3</sub>), 0.71–  $0.58 (m, 1H, CH_2Me), 0.45-0.31 (m, 1H, CH_2Me).$ <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): *δ* 168.8 and 165.4 (2 CO); 135.3, 133.1 and 132.6 (3 C); 129.6, 127.0 and 118.3 (3 CH); 89.7 (COH); 33.3, 30.9, 28.0, 23.0 and 21.8 (5 CH<sub>2</sub>); 23.7, 22.7 and 13.8 (3 CH<sub>3</sub>). MS  $(EI, 70 \text{ eV}): m/z (\%) = 304 (0.1) [M]^+, 219 (49) [M - \text{hexyl}]^+, 229 (1)$ [M - NHAc]<sup>+</sup>, 219 (49), 187 (7), 187 (13), 177 (100) [M - hexyl acetyl]<sup>+</sup>, 43 (25), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3407$ (m), 3259 (m), 2935 (m), 2855 (w), 1704 (s), 1686 (s), 1608 (s), 1526 (s), 1486 (s), 1420 (s), 1396 (m), 1365 (m), 1287 (s), 1236 (w), 1086 (w), 1043 (w), 760 (w), 635 (w), 577 (w), 541 (w), 479 (w). **HR MS** (EI): calc. for C<sub>17</sub>H<sub>24</sub>N<sub>2</sub>O<sub>3</sub>: 304.17868; found: 304.17455 [M]<sup>+</sup>.

#### 7-Amino-3-hexyl-3-hydroxy-2,4,6-trimethyl-2,3-dihydroisoindol-1-one (3)

*R*<sub>f</sub> (SiO<sub>2</sub>, *n*-heptane–EtOAc = 1 : 1): 0.17. Yield: 38%, crystallized from toluene. Mp: 101 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): δ 6.88 (s, 1H, CH), 5.98 (s, 1H, OH), 5.68 (s, 2H, NH<sub>2</sub>), 2.71 (s, 3H, NCH<sub>3</sub>), 2.23 (s, 3H, =CCH<sub>3</sub>), 2.13–1.99 (m, 1H, CH<sub>2</sub>COH), 2.05 (s, 3H, =CCH<sub>3</sub>), 1.95–1.84 (m, 1H, CH<sub>2</sub>COH), 1.13 (m, 6H, 3 CH<sub>2</sub>), 0.77 (t, *J* = 6.9 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 0.73–0.60 (m, 1H, CH<sub>2</sub>CH<sub>3</sub>), 0.57–0.41 (m, 1H, CH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 168.2 (CO); 142.2, 142.1, 122.3, 119.0 and 112.8 (5 *C*); 135.6 (CH-Ar); 89.8 (COH); 33.7, 31.0, 28.3, 23.1 and 21.9 (5 CH<sub>2</sub>); 22.2 (NCH<sub>3</sub>); 16.3 and 16.2 (2 =CCH<sub>3</sub>); 13.8 (CH<sub>2</sub>CH<sub>3</sub>). MS (EI, 70 eV): *m/z* (%) = 290 (14) [M]<sup>+</sup>, 172 (26)

$$\begin{split} & [M-H_2O]^+, 215~(74), 205~(100), 189~(11), 146~(8), no other peaks \\ >5\%. IR~(KBr)~cm^{-1}:~1/\lambda = 3469~(m),~3363~(s),~3294~(m),~2925 \\ & (m),~2859~(m),~1658~(s),~1596~(m),~1498~(m),~1434~(m),~1356~(w), \\ & 1309~(w),~1267~(w),~1078~(m),~1038~(w),~901~(w),~804~(w),~729~(w), \\ & 558~(w).~HR~MS~(EI):~calc.~for~C_{17}H_{26}N_2O_2:~290.19918;~found: \\ & 290.19943~[M]^+. \end{split}$$

#### 7-Amino-4,6-diethyl-3-hexyl-3-hydroxy-2-methyl-2,3dihydroisoindol-1-one (4)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.20. Yield: 35%, crystallized from toluene. Mp: 154 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  6.94 (s, 1H, CH), 6.01 (s, 1H, OH), 5.78 (s, 2H, NH<sub>2</sub>), 2.71 (s, 3H, NCH<sub>3</sub>), 2.68–2.57 (m, 2H, =CCH<sub>2</sub>), 2.53–2.40 (m, 2H, =CCH<sub>2</sub>), 2.00–1.90 (m, 2H, COHCH<sub>2</sub>), 1.20–1.02 (m, 12H,  $2 = CCH_2CH_3$  and  $(CH_2)_3CH_2Me$ , 0.77 (t, J = 6.7 Hz, 3H,  $(CH_2)_5CH_3$ , 0.73–0.61 (m, 1H,  $(CH_2)_4CH_2Me$ ), 0.56–0.43 (m, 1H,  $(CH_2)_4 CH_2 Me$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  168.2 (CO); 141.7, 141.6, 128.4, 125.8 and 112.6 (5 C); 132.2 (CH-Ar); 89.8 (COH); 34.9 (COHCH<sub>2</sub>); 31.0, 28.3 and 21.9 ((CH<sub>2</sub>)<sub>3</sub>Me), 23.2 ((CH<sub>2</sub>)<sub>4</sub>CH<sub>2</sub>Me); 22.7 and 22.5 (2 =CCH<sub>2</sub>Me); 22.1 (NCH<sub>3</sub>); 15.9 and 13.4 (2 = $CH_2CH_3$ ); 13.8 (( $CH_2$ )<sub>5</sub> $CH_3$ ). MS (EI, 70 eV): m/z (%) = 318 (12) [M]<sup>+</sup>, 300 (3) [M - H<sub>2</sub>O]<sup>+</sup>, 243 (6), 233 (100), 217 (6), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3467$  (s), 3364 (s), 3265 (s), 2964 (s), 2931 (s), 2870 (m), 1658 (s), 1628 (m), 1594 (s), 1490 (m), 1438 (s), 1417 (m), 1398 (m), 1367 (m), 1308 (m), 1264 (w), 1228 (w), 1082 (m), 1055 (m), 1031 (w), 897 (w), 844 (w), 808 (w), 686 (w). Anal. Calc. for C<sub>19</sub>H<sub>30</sub>N<sub>2</sub>O<sub>2</sub>: C 71.66, H 9.50, N 8.80; found: C 72.50, H 9.50, N 8.92%.

#### 7-Amino-3-hexyl-3-hydroxy-2-methyl-4,6-diisopropyl-2,3dihydroisoindol-1-one (5)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.11. Yield 34%, crystallized from toluene. Mp: 159–162 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta = 7.11 (s, 1H, CH), 6.04 (s, 1H, OH), 5.86 (s, 2H, NH<sub>2</sub>), 3.41-3.28$ (m, 1H, CHMe<sub>2</sub>), 3.05–2.95 (m, 1H, CHMe<sub>2</sub>), 2.71 (s, 3H, NCH<sub>3</sub>), 2.01–2.00 (m, 2H, COHCH<sub>2</sub>), 1.22–1.03 (m, 18H, 2 CH(CH<sub>3</sub>)<sub>2</sub> and  $(CH_2)_3CH_2Me$ , 0.77 (t, J = 6.8 Hz, 3H,  $(CH_2)_5CH_3$ ), 0.73–  $0.62 (m, 1H, CH_2Me), 0.56-0.43 (m, 1H, CH_2Me).$ <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 168.2 (CO); 141.2, 140.5, 128.4, 133.1 and 131.1 (5 C); 125.7 (CH-Ar); 89.7 (COH); 35.4 (COHCH<sub>2</sub>); 31.0, 28.3 and 22.0 ((CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>Me); 23.2 ((CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>Me); 26.8 and 25.9 (CHMe<sub>2</sub>); 24.1 and 22.7 (2 CH(CH<sub>3</sub>)<sub>2</sub>); 22.2 (NCH<sub>3</sub>); 13.8 ((CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 346 (30) [M]<sup>+</sup>, 328 (6)  $[M - H_2O]^+$ , 271 (8), 261 (100)  $[M - hexyl]^+$ , 245 (14), 231 (11), 43 (12), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3471$  (s), 3371 (s), 3288 (m), 2962 (s), 2932 (m), 2870 (m), 1655 (s), 1629 (w), 1593 (m), 1489 (m), 1439 (m), 1415 (w), 1400 (w), 1363 (w), 1352 (w), 1248 (m), 1080 (m), 1037 (w), 1009 (w), 900 (w), 810 (w), 793 (w), 636 (w), 577 (w), 519 (w). **HR MS** (EI): calc. for  $C_{21}H_{34}N_2O_2$ : 346.26202; found: 346.26089 [M]+.

#### 7-Amino-4,6-dibenzyl-3-hexyl-3-hydroxy-2-methyl-2,3dihydroisoindol-1-one (6)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.11. Yield: 45%, crystallized from toluene. Mp: 131–134 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.35–7.04 (m, 10H, 2 Ph), 6.87 (s, 1H, CH-Ar), 6.17 (s, 1H, OH), 5.91 (s, 2H, NH<sub>2</sub>), 4.12 (d, *J* = 15.9 Hz, 1H, PhCH<sub>2</sub>), 3.94

 $(d, J = 15.9 \text{ Hz}, 1\text{H}, PhCH_2), 3.90-3.76 (m, 2H PhCH_2), 2.70$ (s, 3H, NCH<sub>3</sub>), 1.92–1.68 (m, 2H, COHCH<sub>2</sub>), 1.12–0.98 (m, 2H,  $(CH_2)_4$ Me), 1.12–0.98 (m, 2H  $(CH_2)_4$ Me), 0.98 (t, J = 7.2 Hz, 3H, (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>), 0.66–0.50 (m, 2H, (CH<sub>2</sub>)<sub>4</sub>Me), 0.39–0.22 (m, 2H,  $CH_2$ Me). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  168.0 (CO); 143.2, 142.4, 141.4, 140.0, 125.7, 121.8 and 113.1 (7 C); 136.3 (CH-Ar); 128.6 (2 CH-Ar); 128.4 (4 CH-Ar); 128.1 (2 CH-Ar); 125.9 and 125.6 (2 CH-Ar); 89.8 (COH); 35.2, 35.0, 35.0, 31.0, 28.0, 23.2 and 22.0 (7 CH<sub>2</sub>); 22.2 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 442 (36) [M]<sup>+</sup>, 424 (57) [M - H<sub>2</sub>O]<sup>+</sup>, 367 (33), 357 (61), 353 (23), 341 (13), 297 (100), 261(5), 91 (19), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3456$  (s), 3362 (s), 3257 (m), 3062 (w), 3028 (w), 2948 (m), 2923 (s), 2857 (m), 1664 (s), 1629 (m), 1594 (s), 1493 (s), 1433 (s), 1394 (m), 1358 (m), 1261 (w), 1128 (w), 1107 (w), 1081 (m), 1045 (m), 1017 (m), 948 (w), 929 (w), 891 (w), 863 (w), 814 (w), 729 (m), 698 (s), 644 (w), 602 (w). HR MS (EI): calc. for C<sub>29</sub>H<sub>34</sub>N<sub>2</sub>O<sub>2</sub>: 442.2615; found: 442.26062 [M]<sup>+</sup>.

#### 3-Hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (7)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.08. Yield: 70%. Mp: 80 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO- $d_6$ ):  $\delta$  7.66–7.53 (m, 3H, CH-Ar), 7.51-7.44 (m, 1H, CH-Ar), 6.24 (s, 1H, OH), 2.80 (s, 3H, NCH<sub>3</sub>), 2.08–1.88 (m, 2H, COHCH<sub>2</sub>), 1.20–0.99 (m, 6H, CH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>Me), 0.76 (t, J = 6.9 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 0.82-0.70 (m, 1H, CH<sub>2</sub>Me), 0.53–0.41 (m, 1H, CH<sub>2</sub>Me). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO $d_{6}$ ):  $\delta$  165.8 (CO); 147.5 and 131.6 (2 C); 131.9, 129.0, 122.0 and 122.0 (4 CH); 89.7 (COH); 35.4, 31.0, 28.3, 23.0 and 21.9 (5 CH<sub>2</sub>); 22.8 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 247 (0.1) [M]<sup>+</sup>,  $229(3)[M - H_2O]^+$ , 172(19), 162(100) $[M - H_2O]^+$ , 133(21), 105 (10), 91 (5), 77 (18), 41 (11), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3282$  (vs), 3058 (m), 2929 (s), 2867 (s), 1687 (s), 1617 (m), 1480 (m), 1569 (s), 1429 (s), 1397 (s), 1337 (w), 1284 (m), 1242 (w), 1196 (w), 1121 (m), 1090 (s), 1059 (s), 1025 (m), 1013 (m), 987 (w), 954 (w), 925 (w), 834 (w), 770 (s), 702 (s), 671 (m), 622 (m), 551 (m), 499 (w), 470 (w). **HR MS** (ESI): calc. for  $C_{15}H_{22}NO_2$ : 248.16505; found: 248.16497 [M + 1]<sup>+</sup>.

### 7-Chloro-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (8a)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2:1): 0.25. Yield: 27%, oily product. <sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.59 (t, J = 7.7 Hz, 1H, 5-CH-Ar), 7.54 (dd, J = 7.53 and 1.1 Hz, 1H, CH-Ar), 7.47 (dd, J = 7.7and 1.1 Hz, 1H, CH-Ar), 6.30 (s, 1H, OH), 2.79 (s, 3H, NCH<sub>3</sub>), 2.08–1.91 (m, 2H, COHCH<sub>2</sub>), 1.20–1.01 (m, 6H, (CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>Me), 0.76 (t, J = 6.8 Hz, 3H, (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>), 0.83-0.69 (m, 1H, CH<sub>2</sub>Me), 0.56–0.41 (m, 1H, CH<sub>2</sub>Me). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSOd<sub>6</sub>): δ 163.5 (CO); 150.3, 128.7 and 127.1 (3 C); 133.4, 130.4 and 121.0 (3 CH); 88.6 (COH); 35.2, 30.9, 28.2, 22.9 and 21.9 (5 CH<sub>2</sub>); 23.0 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 263 (1) [M -H<sub>2</sub>O]<sup>+</sup>, 206 (6), 198 (34), 196 (100) [M - hexyl]<sup>+</sup>, 167 (5), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3359$  (s), 2978 (s), 2859 (s), 1700 (s), 1606 (m), 1457 (s), 1420 (s), 1395 (s), 1250 (w), 1196 (w), 1172 (w), 1147 (w), 1091 (m), 1058 (m), 1021 (s), 943 (w), 833 (m), 806 (s), 781 (m), 699 (m), 675 (w), 639 (w), 608 (w), 566 (m), 497 (w). HR MS (ESI): calc. for C<sub>15</sub>H<sub>21</sub>ClNO<sub>2</sub>: 282.12607; found: 282.12497 [M + 1]<sup>+</sup>.

#### 4-Chloro-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (8b)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.15. Yield: 60%. Mp: 76– 77 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.76 (dd, J = 7.7 and 0.9 Hz, 1H, CH-Ar), 7.60 (dd, J = 7.5 and 0.89 Hz, 1H, CH-Ar), 7.51 (t, J = 7.5 Hz, 1H, 6-CH-Ar), 6.43 (s, 1H, OH), 2.81 (s, 3H, NCH<sub>3</sub>), 2.48–2.34 (m, 1H, COHCH<sub>2</sub>), 2.03–1.88 (m, 1H,  $COHCH_2$ ), 1.20–0.97 (m, 6H,  $(CH_2)_3CH_2Me$ ), 0.76 (t, J = 6.5 Hz, 3H, (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>), 0.79–0.62 (m, 1H, CH<sub>2</sub>Me), 0.51–0.32 (m, 1H,  $CH_2Me$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  164.4 (CO); 142.6, 134.4 and 128.3 (3 C); 132.8, 131.1 and 121.1 (3 CH); 90.4 (COH); 32.5, 30.8, 28.1, 22.8 and 21.8 (5 CH<sub>2</sub>); 22.8 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 264 (0.2) [M - H<sub>2</sub>O]<sup>+</sup>, 206 (1), 198 (37), 196 (100) [M - hexyl]<sup>+</sup>, 162 (10), 103 (7), 75 (5), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3279$  (s), 2952 (s), 2930 (m), 2860 (s), 1691 (s), 1609 (w), 1585 (m), 1479 (m), 1466 (s), 1421 (s), 1397 (s), 1337 (w), 1312 (w), 1229 (w), 1151 (w), 1092 (s), 1032 (s), 1018 (m), 896 (w), 874 (w), 818 (w), 792 (m), 764 (m), 720 (w), 694 (w), 627 (w), 600 (w), 567 (w). HR MS (ESI): calc. for  $C_{15}H_{21}CINO_2$ : 282.12607; found: 282.12524 [M + 1]<sup>+</sup>.

#### 6-Chloro-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (9a)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.15. Yield: 34%. Mp: 127 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.66 (dd, J = 7.9 and 2.2 Hz, 1H, CH-Ar), 7.63–7.59 (m, 2H, CH-Ar), 6.35 (s, 1H, OH), 2.81 (s, 3H, NCH<sub>3</sub>), 2.10–1.88 (m, 2H, COHCH<sub>2</sub>), 1.20–1.02 (m, 6H,  $(CH_2)_3$ CH<sub>2</sub>Me), 0.76 (t, J = 6.9 Hz, 3H,  $(CH_2)_5$ CH<sub>3</sub>), 0.84–0.68 (m, 1H,  $CH_2Me$ ), 0.56–0.41 (m, 1H,  $CH_2Me$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 164.4 (CO); 146.1, 133.8 and 133.6 (3 C); 131.8, 124.0 and 121.9 (3 CH); 89.6 (COH); 35.2, 30.9, 28.2, 22.9 and 21.9 (5 CH<sub>2</sub>); 23.0 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 280 (0.2) [M]<sup>+</sup>, 263 (0.6) [M - H<sub>2</sub>O]<sup>+</sup>, 230 (7), 206 (4), 198 (34), 196 (100)  $[M - hexyl]^+$ , 167 (6), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3303$  (s), 2925 (s), 2860 (m), 1680 (s), 1612 (w), 1454 (m), 1441 (m), 1411 (m), 1392 (m), 1286 (w), 1230 (w), 1194 (w), 1091 (m), 1069 (m), 1057 (w), 1024 (m), 995 (w), 931 (w), 890 (w), 837 (m), 787 (w), 714 (m), 696 (w), 669 (w), 636 (w), 587 (w). HR MS (ESI): calc. for C<sub>15</sub>H<sub>21</sub>ClNO<sub>2</sub>: 282.12607; found: 282.12497 [M + 1]<sup>+</sup>.

#### 5-Chloro-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1-one (9b)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.13. Yield: 48%. Mp: 133– 135 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.68 (dd, J = 1.6 Hz, 1H, CH-Ar), 7.62 (d, J = 8.1 Hz, 1H, CH-Ar), 7.54 (dd, J = 8.1and 1.6 Hz, 1H, CH-Ar), 6.39 (s, 1H, OH), 2.80 (s, 3H, NCH<sub>3</sub>), 2.11–1.90 (m, 2H, COHCH<sub>2</sub>), 1.19–1.03 (m, 6H, (CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>Me),  $0.77 (t, J = 6.8 Hz, 3H, (CH_2)_5 CH_3), 0.80-0.67 (m, 1H, CH_2 Me),$  $0.55-0.39 \text{ (m, 1H, C}H_2\text{Me}\text{)}$ . <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSOd<sub>6</sub>): δ 164.8 (CO); 149.5, 136.8 and 130.4 (3 C); 129.3, 123.9 and 122.4 (3 CH); 89.5 (COH); 35.0, 30.9, 28.2, 22.9 and 21.9 (5 CH<sub>2</sub>); 23.0 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 263 (1) [M - $H_2O^{+}_{2}$ , 230 (4), 206 (3), 198 (32), 196 (100)  $[M - hexyl]^+$ , 167 (7), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3274$  (s), 2922 (s), 2856 (s), 1685 (s), 1613 (m), 1481 (m), 1461 (m), 1429 (s), 1396 (s), 1287 (s), 1262 (s), 1231 (s), 1217 (s), 1196 (s), 1127 (s), 1094 (s),

1078 (s), 1046 (w), 1020 (m), 933 (s), 879 (m), 843 (m), 790 (m), 700 (m), 597 (w), 526 (w). HR MS (ESI): calc. for C<sub>15</sub>H<sub>21</sub>ClNO<sub>2</sub>: 282.12607; found: 282.12525 [M + 1]<sup>+</sup>.

#### 5,6-Dichloro-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindol-1one (10)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.16. Yield: 44%. Mp: 102– 104 °C. <sup>1</sup>**H NMR** (400 MHz, DMSO-d<sub>6</sub>): δ 7.93 (s, 1H, CH-Ar), 7.83 (s, 1H, CH), 6.46 (s, 1H, OH), 2.81 (s, 3H, NCH<sub>3</sub>), 2.08 (m, 1H, COHCH<sub>2</sub>), 1.94 (m, 1H, COHCH<sub>2</sub>), 1.19–1.00 (m, 6H,  $(CH_2)_3$ CH<sub>2</sub>Me), 0.76 (t, J = 6.7 Hz, 3H,  $(CH_2)_5$ CH<sub>3</sub>), 0.80–0.68 (m, 1H,  $CH_2CH_3$ ), 0.58–0.44 (m, 1H,  $CH_2CH_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR  $(100.6 \text{ MHz}, \text{DMSO-d}_6)$ :  $\delta$  163.7 (CO); 147.4, 134.8, 132.2 and 131.9 (4 C); 124.7 and 124.1 (2 CH); 89.5 (COH); 34.9, 30.9, 28.3, 23.1 and 21.9 (5 CH<sub>2</sub>); 22.9 and 13.8 (2 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 315 (1) [M]<sup>+</sup>, 234 (44), 233 (25), 232 (83), 231 (42), 230 (100) [M - hexyl]<sup>+</sup>, 219 (6), 217 (13), 214 (18), 203 (15), 201 (19), 198 (6), 195 (6), 173 (6), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3322$  (m), 3059 (m), 2923 (s), 2858 (m), 1673 (s), 1469 (m), 1435 (s), 1404 (s), 1299 (m), 1109 (m), 1088 (m), 1066 (m), 1025 (m), 1000 (w), 932 (m), 874 (m), 790 (w), 702 (m), 659 (w), 610 (m). HR MS (ESI): calc. for C<sub>15</sub>H<sub>20</sub>Cl<sub>2</sub>NO<sub>2</sub>: 316.0866; found: 316.0869  $[M + 1]^+$ .

#### 4-Fluoro-3-hexyl-3-hydroxy-2-methyl-2,3-dihydroisoindole-1-one (11a) and (11b)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.08. Yield: 60%. Mp: 89– 90 °C. MS (EI, 70 eV): m/z (%) = 266 (1) [M + 1]<sup>+</sup>, 180 (100) [M - hexyl]<sup>+</sup>, 151 (19), 148 (8), 123 (6), 103 (22), 95 (12), 75 (11), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3315$  (s), 2957 (m), 2929 (s), 2859 (m), 1690 (s), 1627 (w), 1604 (m), 1484 (s), 1425 (s), 1391 (m), 1253 (m), 1085 (m), 1056 (w), 1025 (w), 995 (w), 969 (w), 928 (w), 859 (w), 811 (w), 770 (m), 702 (m), 677 (w), 582 (w). HR MS (ESI): calc. for C<sub>15</sub>H<sub>21</sub>FNO<sub>2</sub>: 266.15508, found: 266.15540  $[M + 1]^+$ . A 1 : 2 mixture of isomers was obtained.

#### 4,5,6,7-Tetrafluoro-3-hexyl-3-hydroxy-2-methyl-2,3dihydroisoindol-1-one (12)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 5 : 1): 0.11. Yield: 73%. Mp: 116– 118 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): δ 6.83 (s, 1H, OH), 2.79 (s, 3H, NCH<sub>3</sub>), 2.07 (m, 2H, COHCH<sub>2</sub>), 1.25–1.04 (m, 6H,  $(CH_2)_3$ CH<sub>2</sub>Me), 0.78 (t, J = 6.8 Hz, 3H,  $(CH_2)_5$ CH<sub>3</sub>), 0.87–0.73 (m, 1H,  $CH_2Me$ ), 0.71–0.60 (m, 1H,  $CH_2Me$ ). <sup>13</sup>C{<sup>1</sup>H} NMR  $(100.6 \text{ MHz}, \text{DMSO-d}_6)$ :  $\delta$  160.5 (CO); 142.8 (J = 257 Hz, CF); 142.7 (J = 261 Hz, CF); 141.8 (J = 250 Hz, CF); 141.0 (J =252 Hz, CF); 128.9 (d, J = 13 Hz, C); 114.8 (d, J = 9 Hz, C); 89.3 (COH); 34.2, 30.9, 28.2, 22.8 and 21.9 (5 CH<sub>2</sub>); 23.0 and 13.8 (2 CH<sub>3</sub>). **MS** (EI, 70 eV): m/z (%) = 319 (1) [M]<sup>+</sup>, 300 (7)  $[M - F]^+$ , 234 (100)  $[M - hexyl]^+$ , 205 (11), 202 (12), 177 (9), 149 (5), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3347$  (s), 2956 (s), 2931 (s), 2869 (m), 1681 (s), 1649 (m), 1511 (s), 1429 (s), 1397 (s), 1307 (w), 1143 (w), 1090 (m), 1023 (m), 1006 (m), 969 (w), 912 (m), 883 (w), 804 (m), 791 (w), 778 (w), 725 (w), 675 (w). **HR MS** (EI): calc. for  $C_{15}H_{17}F_4NO_2$ : 319.1190; found: 319.11828 [M]+.

#### 7-Amino-3-ethyl-3-hydroxy-2,4,6-trimethyl-2,3-dihydroisoindol-1-one (13)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 1 : 1): 0.10. Yield: 73%, crystallized from toluene. Mp: 156–158 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  6.89 (s, 1H, CH), 6.00 (s, 1H, OH), 5.68 (s, 2H, NH<sub>2</sub>), 2.71 (s, 3H, NCH<sub>3</sub>), 2.23 (s, 3H, =CCH<sub>3</sub>), 2.06 (m, 1H, CH<sub>2</sub>), 2.05 (s, 3H,  $=CCH_3$ ), 1.92 (m, 1H,  $CH_2$ ), 0.30 (t, J = 7.4 Hz, 3H,  $CH_2CH_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  168.3 (CO); 142.1, 141.7, 122.3, 119.0 and 113.1 (5 C); 135.6 (CH-Ar); 90.4 (COH); 26.7 (CH<sub>2</sub>); 22.1 (NCH<sub>3</sub>); 16.3 and 16.2 (2 =CCH<sub>3</sub>), 7.7  $(CH_2CH_3)$ . MS (EI, 70 eV): m/z (%) = 234 (44) [M]<sup>+</sup>, 216 (17)  $[M - H_2O]^+$ , 205 (100)  $[M - ethyl]^+$ , 161 (16), 146 (23), 131 (5), 119 (9), 102 (10), 91 (10), 79 (9), 65 (5), 42 (5), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3469$  (s), 3364 (s), 3266 (m), 2970 (m), 2938 (s), 1662 (s), 1632 (m), 1596 (s), 1496 (m), 1461 (m), 1433 (m), 1397 (m), 1377 (w), 1355 (w), 1322 (w), 1304 (w), 1276 (w), 1262 (w), 1119 (w), 1090 (m), 1062 (w), 1027 (m), 961 (w), 872 (w), 804 (w), 685 (w), 561 (w), 542 (w), 510 (w), 483 (w). HR MS (EI): calc. for C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>: 234.13683; found: 234.13662 [M]<sup>+</sup>.

#### 7-Amino-3-hydroxy-2,4,6-trimethyl-3-pentyl-2,3-dihydroisoindol-1-one (14)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.08. Yield: 58%, crystallized from toluene. Mp: 132-133 °C. 1H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  6.88 (s, 1H, CH-Ar), 5.98 (s, 1H, OH), 5.67 (s, 2H,  $NH_2$ ), 2.71 (s, 3H,  $NCH_3$ ), 2.23 (s, 3H,  $=CCH_3$ ), 2.12-2.00 (m, 1H, CH<sub>2</sub>COH), 2.05 (s, 3H, =CCH<sub>3</sub>), 1.94-1.85 (m, 1H,  $CH_2COH$ ), 1.17–1.03 (m, 4H, 2  $CH_2$ ), 0.74 (m, 3H, CH<sub>2</sub>CH<sub>3</sub>), 0.72–0.61 (m, 1H, CH<sub>2</sub>Me), 0.54–0.43 (m, 1H,  $CH_2$ Me). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  168.3 (CO); 142.2, 142.2, 122.3, 119.0 and 112.9 (5 C); 135.6 (CH-Ar); 89.8 (COH); 33.7, 30.9, 22.8 and 21.9 (4 CH<sub>2</sub>); 22.2 (NCH<sub>3</sub>); 16.3 and 16.2 (2 = $CCH_3$ ); 13.8 ( $CH_2CH_3$ ). MS (EI, 70 eV): m/z (%) = 276 (13) [M]<sup>+</sup>, 158 (5) [M - H<sub>2</sub>O]<sup>+</sup>, 215 (15), 205 (100), 146 (6), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3463$ (s), 3374 (s), 3297 (s), 2947 (s), 2924 (s), 2861 (m), 1662 (s), 1632 (s), 1598 (m), 1498 (s), 1432 (s), 1397 (m), 1354 (w), 1298 (m), 1269 (w), 1240 (w), 1124 (w), 1078 (m), 1036 (w), 1016 (w), 875 (w), 743 (w), 592 (w), 567 (w). **HR MS** (EI): calc. for  $C_{16}H_{24}N_2O_2$ : 276.18378; found: 276.18335 [M<sup>+</sup>].

#### 7-Amino-3-heptyl-3-hydroxy-2,4,6-trimethyl-2,3-dihydroisoindol-1-one (15)

*R*<sub>f</sub> (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.05. Yield: 20%, crystallized from toluene. Mp: 119 °C. <sup>1</sup>**H** NMR (400 MHz, DMSO-d<sub>6</sub>): δ 6.88 (s, 1H, *CH*), 5.98 (s, 1H, *OH*), 5.67 (s, 2H, *NH*<sub>2</sub>), 2.71 (s, 3H, *NCH*<sub>3</sub>), 2.23 (s, 3H, =CC*H*<sub>3</sub>), 2.11–2.00 (m, 1H, *CH*<sub>2</sub>COH), 2.05 (s, 3H, =CC*H*<sub>3</sub>), 1.93–1.85 (m, 1H, *CH*<sub>2</sub>COH), 1.25–1.03 (m, 8H, 4 *CH*<sub>2</sub>), 0.79 (t, *J* = 7.0 Hz, 3H, *CH*<sub>2</sub>*CH*<sub>3</sub>), 0.73–0.61 (m, 1H, *CH*<sub>2</sub>*CH*<sub>3</sub>), 0.54–0.42 (m, 1H, *CH*<sub>2</sub>*CH*<sub>3</sub>), 1<sup>3</sup>C{<sup>1</sup>**H**} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 168.2 (*CO*); 142.2, 142.3, 122.3, 119.0 and 112.9 (5 *C*); 135.6 (*C*H-Ar); 89.8 (*CO*H); 33.7, 31.1, 28.6, 28.4, 23.1 and 22.0 (6 *C*H<sub>2</sub>); 22.2 (*NC*H<sub>3</sub>); 16.3 and 16.2 (2 =C*C*H<sub>3</sub>); 13.9 (*C*H<sub>2</sub>*C*H<sub>3</sub>). **MS** (EI, 70 eV): *m/z* (%) = 304 (13) [M]<sup>+</sup>, 286 (4) [M − H<sub>2</sub>O]<sup>+</sup>, 215 (14), 205 (100), 190 (6), 146 (6), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>: 1/λ = 3473 (s), 3369 (s), 3298 (s), 2954 (s), 2931 (s), 2867 (s), 1659 (s), 1629 (m), 1593 (s), 1497 (m), 1459 (m),

1433 (s), 1397 (m), 1355 (m), 1307 (m), 1267 (m), 1077 (m), 1022 (m), 896 (w), 866 (m), 803 (w), 725 (w), 663 (w), 641 (w), 615 (w), 557 (w). HR MS (EI): calc. for  $C_{18}H_{28}N_2O_2$ : 304.21509; found: 304.21488 [M]<sup>+</sup>.

#### 7-Amino-3-hydroxy-2,4,6-trimethyl-3-octyl-2,3-dihydroisoindol-1-one (16)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 3 : 1): 0.08. Yield: 30%, crystallized from toluene. Mp: 118 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$ 6.88 (s, 1H, CH), 5.98 (s, 1H, OH), 5.67 (s, 2H, NH<sub>2</sub>), 2.71 (s, 3H, NC $H_3$ ), 2.22 (s, 3H, =CC $H_3$ ), 2.09–2.00 (m, 1H, C $H_2$ COH), 2.05 (s, 3H, =CCH<sub>3</sub>), 1.94-1.84 (m, 1H, CH<sub>2</sub>COH), 1.25-1.04 (m, 10H, 5 CH<sub>2</sub>), 0.80 (t, J = 7.1 Hz, 3H, CH<sub>2</sub>CH<sub>3</sub>), 0.72–0.62 (m, 1H,  $CH_2CH_3$ ), 0.54–0.43 (m, 1H,  $CH_2CH_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 168.2 (CO); 142.2, 142.1, 122.3, 119.0 and 112.9 (5 C); 135.6 (CH-Ar); 89.8 (COH); 33.7, 31.1, 28.7, 28.6, 28.5, 23.1 and 22.0 (7 CH<sub>2</sub>); 22.2 (NCH<sub>3</sub>); 16.3 and 16.2  $(2 = CCH_3)$ ; 13.9 (CH<sub>2</sub>CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 318 (10)  $[M]^{+}$ , 300 (6)  $[M - H_2O]^{+}$ , 215 (20), 205 (100), 189 (6), 146 (5), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3467$  (s), 3361 (s), 3288 (s), 2951 (s), 2928 (s), 2857 (s), 1660 (s), 1630 (m), 1597 (s), 1498 (m), 1459 (m), 1433 (s), 1396 (m), 1356 (m), 1309 (w), 1267 (w), 1081 (m), 1028 (m), 902 (w), 867 (w), 803 (w), 669 (w), 557 (w). HR MS (EI): calc. for C<sub>19</sub>H<sub>30</sub>N<sub>2</sub>O<sub>2</sub>: 318.23074; found: 318.22980 [M]<sup>+</sup>.

#### 7-Amino-3-decyl-3-hydroxy-2,4,6-trimethyl-2,3-dihydroisoindol-1-one (17)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 1 : 1): 0.11. Yield: 11%, crystallized from toluene. Mp: 99–102 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$ 6.87 (s, 1H, CH), 5.98 (s, 1H, OH), 5.67 (s, 2H, NH<sub>2</sub>), 2.71 (s, 3H,  $NCH_3$ ), 2.23 (s, 3H, =CCH<sub>3</sub>), 2.05 (s, 3H, =CCH<sub>3</sub>), 2.10–2.00 (m, 1H, CH<sub>2</sub>COH), 1.94–1.83 (m, 1H, CH<sub>2</sub>COH), 1.28–1.04 (m, 14H,  $(CH_2)_7$ Me), 0.82 (t, J = 7.1 Hz, 3H,  $CH_2CH_3$ ), 0.73–0.60 (m, 1H,  $CH_2CH_3$ ), 0.54–0.41 (m, 1H,  $CH_2CH_3$ ). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>): δ 168.2 (CO); 142.2, 142.1, 122.3, 118.9 and 112.8 (5 C); 135.5 (CH-Ar); 89.8 (COH); 33.6, 31.2, 28.8, 28.8, 28.7, 28.6, 28.5, 23.1 and 22.1 (9 CH<sub>2</sub>); 22.1 (NCH<sub>3</sub>); 16.3 and 16.2  $(2 = CCH_3)$ ; 13.9 (CH<sub>2</sub>CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 346 (10)  $[M]^+$ , 328 (5)  $[M - H_2O]^+$ , 215 (15), 205 (100)  $[M - decyl]^+$ , no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3466$  (s), 3361 (s), 3291 (m), 2953 (m), 2924 (s), 2853 (s), 1657 (s), 1630 (m), 1598 (s), 1499 (m), 1434 (m), 1411 (m), 1396 (m), 1357 (m), 1309 (m), 1263 (m), 1085 (m), 1030 (m), 908 (w), 878 (w), 803 (w), 716 (w), 666 (w), 557 (w), 491 (w), 433 (w). HR MS (EI): calc. for  $C_{21}H_{34}N_2O_2$ : 346.26202; found: 346.25677 [M]<sup>+</sup>.

#### 7-Amino-3-hydroxy-2,4,6-trimethyl-3-*p*-tolyl-2,3-dihydroisoindol-1-one (18a)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.14. Yield: 29%, crystallized from toluene. Mp: 218–219 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.10 (s, 4H, CH-tolyl), 6.80 (s, 1H, CH-phenyl), 6.58 (s, 1H, OH), 5.75 (s, 2H, NH<sub>2</sub>), 2.46 (s, 3H, CH<sub>3</sub>), 2.24 (s, 3H, CH<sub>3</sub>), 2.05 (s, 3H, CH<sub>3</sub>), 1.77 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  168.4 (CO); 144.6, 142.3, 136.7, 136.4, 122.7, 119.2 and 111.9 (7 C); 135.7 (CH-phenyl); 128.7 and 125.9 (2 CH-phenyl); 89.2 (COH); 22.7, 20.6, 16.4 and 15.8 (4 CH<sub>3</sub>). MS (EI, 70 eV): m/z (%) = 296 (72) [M]<sup>+</sup>, 279 (78) [M – OH]<sup>+</sup>, 264 (8), 250 (8),

205 (100)  $[M - tolyl]^+$ , 161 (6), 146 (13), 132 (9), 119 (13), 91 (26), 77 (8), 65 (14), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3481$ (s), 3367 (m), 3210 (m), 2920 (w), 1668 (s), 1588 (s), 1497 (m), 1440 (m), 1397 (m), 1378 (m), 1354 (w), 1301 (w), 1272 (w), 1198 (w), 1175 (m), 1081 (w), 1033 (m), 969 (w), 920 (w), 885 (w), 845 (w), 816 (m), 800 (w), 790 (w), 766 (w), 609 (w), 552 (w), 518 (w). **HR MS** (EI): calc. for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O<sub>2</sub>: 296.15247; found: 296.15255 [M]<sup>+</sup>.

#### 4-Amino-3-hydroxy-2,5,7-trimethyl-3-(4-tolyl)-2,3dihydroisoindol-1-one (18b)

 $R_{\rm f}$  (SiO<sub>2</sub>, *n*-heptane–EtOAc = 2 : 1): 0.19. Yield: 22%, crystallized from toluene. Mp: 130–133 °C. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>):  $\delta$  7.12 (m, 4H, CH-tolyl), 6.85 (s, 1H, CH-phenyl), 6.68 (s, 1H, OH), 4.25 (s, 2H, NH<sub>2</sub>), 2.46 (s, 3H, CH<sub>3</sub>), 2.44 (s, 3H, CH<sub>3</sub>), 2.24 (s, 3H, CH<sub>3</sub>), 2.00 (s, 3H, CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (100.6 MHz, DMSO-d<sub>6</sub>):  $\delta$  167.4 (CO); 138.4, 137.0, 135.9, 131.6, 126.3, 125.9 and 122.6 (7 C); 133.0, 129.0 and 125.9 (3 CH-Ar); 88.2 (COH); 22.9, 20.6, 17.1 and 15.9 (4  $CH_3$ ). MS (EI, 70 eV): m/z (%) = 296  $(27) [M]^+, 279 (37) [M - OH]^+, 278 (23) [M - H_2O]^+, 277 (100),$ 263 (21), 250 (5), 205 (22) [M - tolyl]<sup>+</sup>, 132 (6), 119 (9), 91 (33), 65 (11), no other peaks >5%. **IR** (KBr) cm<sup>-1</sup>:  $1/\lambda = 3475$  (s), 3382 (s), 3265 (s), 3028 (w), 2921 (w), 1662 (s), 1636 (s), 1499 (s), 1439 (s), 1396 (m), 1301 (m), 1242 (w), 1196 (w), 1176 (m), 1125 (m), 1098 (m), 1020 (m), 963 (m), 874 (w), 852 (w), 825 (m), 787 (w), 766 (m), 735 (m), 697 (w), 591 (w), 572 (w), 525 (w), 466 (w). HR **MS** (EI): calc. for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O<sub>2</sub>: 296.15247; found: 296.15234 [M]<sup>+</sup>.

#### Acknowledgements

The authors thank Dr W. Baumann, S. Giertz, and Dr C. Fischer (all IfOK) and H. Bartrow (University of Greifswald) for excellent technical and analytical assistance. General financial support from the State of Mecklenburg-Vorpommern (Landesforschungsschwerpunkt), the Deutsche Forschungsgemeinschaft (DFG), and the "Fonds der Chemischen Industrie" is gratefully acknowledged.

#### **References and notes**

- 1 K. Liberra, R. Jansen and U. Lindequist, Pharmazie, 1998, 53, 578.
- 2 T. Ohzeki and K. Mori, Biosci., Biotechnol., Biochem., 2001, 65, 172.
- 3 L. F. Tietze, Chem. Rev., 1996, 96, 115; L. F. Tietze and F. Haunert, in Stimulating Concepts in Chemistry, M. Shibasaki, J. F. Stoddart and F. Vögtle, eds., Wiley-VCH, Weinheim, 2000, p. 39; H. Bienaymé, C. Hulme, G. Oddon and P. Schmitt, Chem.-Eur. J., 2000, 6, 3321; L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304; G. H. Posner, Chem. Rev., 1986, 86, 831; R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown and T. A. Keating, Acc. Chem. Res., 1996, 29, 123.
- 4 A. M. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross and M. Beller, *Science*, 2002, 297, 1676; M. Ahmed, A. M. Seayad, R. Jackstell and M. Beller, *J. Am. Chem. Soc.*, 2003, 125, 10 311; A. Moballigh, R. Jackstell and M. Beller, *Tetrahedron Lett.*, 2004, 45, 869; B. Zimmermann, J. Herwig and M. Beller, *Angew. Chem., Int. Ed.*, 1999, 38, 2372.
- M. Beller and M. Eckert, Angew. Chem., Int. Ed., 2000, 39, 1010; M. Beller, M. Eckert, H. Geissler, B. Napierski, H.-P. Rebenstock and E. W. Holla, Chem.–Eur. J., 1998, 4, 935; M. Beller, M. Eckert, F. Vollmüller, S. Bogdanovic and H. Geissler, Angew. Chem., Int. Ed. Engl., 1997, 36, 1494; M. Beller, M. Eckert, W. Moradi and H. Neumann, Angew. Chem., Int. Ed., 1999, 38, 1454.
- 6 D. Gördes, H. Neumann, A. Jacobi von Wangelin, C. Fischer, K. Drauz, H.-P. Krimmer and M. Beller, *Adv. Synth. Catal.*, 2003, **345**, 510; D. Gördes, A. Jacobi von Wangelin, S. Klaus, H. Neumann, D. Strübing, S. Hübner, H. Jiao, W. Baumann and M. Beller, *Org. Biomol. Chem.*, 2004, **2**, 845.

- 7 (a) H. Neumann, A. Jacobi von Wangelin, D. Gördes, A. Spannenberg and M. Beller, J. Am. Chem. Soc., 2001, 123, 8398; (b) A. Jacobi von Wangelin, H. Neumann, D. Gördes, A. Spannenberg and M. Beller, Org. Lett., 2001, 3, 2895; (c) H. Neumann, A. Jacobi von Wangelin, D. Gördes, A. Spannenberg, W. Baumann and M. Beller, Tetrahedron, 2002, 58, 2381; (d) A. Jacobi von Wangelin, H. Neumann, D. Gördes, S. Klaus, H. Jiao, A. Spannenberg, T. Krüger, C. Wendler, K. Thurow, N. Stoll and M. Beller, Chem.-Eur. J., 2003, 9, 2273; (e) D. Strübing, H. Neumann, S. Klaus, A. Jacobi von Wangelin, D. Gördes, M. Beller, P. Braiuca, C. Ebert, L. Gardossi and U. Kragl, Tetrahedron, 2004, 60, 683.
- 8 J. M. Janey, T. Iwama, S. A. Kozmin and V. H. Rawal, J. Org. Chem., 2000, 65, 9059; M. B. Smith, Org. Prep. Proced. Int., 1990, 22, 315; L. E. Overman, R. L. Freerks, C. B. Petty, L. A. Clizbe, R. K. Ono, G. F. Taylor and P. J. Jessup, J. Am. Chem. Soc., 1981, 103, 2816; W. Oppolzer, L. Bieber and E. Francotte, Tetrahedron Lett., 1979, 16, 4537; for antibody-catalysis, see: M. R. Tremblay, T. J. Dickerson and K. D. Janda, Adv. Synth. Catal., 2001, 343, 577.
- 9 W. Oppolzer, W. Fröstl and H.-P. Weber, *Helv. Chim. Acta*, 1975, 58, 593; W. Oppolzer and E. Flaskamp, *Helv. Chim. Acta*, 1977, 60, 204; W. Oppolzer, E. Flaskamp and L. W. Bieber, *Helv. Chim. Acta*, 2001, 84, 141; L. E. Overman and P. J. Jessup, *Tetrahedron Lett.*, 1977, 14, 1253.
- 10 L. E. Overman, D. Lesuisse and M. Hashimoto, J. Am. Chem. Soc., 1983, 105, 5373.
- 11 S. F. Martin and W. Li, J. Org. Chem., 1989, 54, 268; S. F. Martin and W. Li, J. Org. Chem., 1991, 56, 642.
- 12 S. A. Kozmin and V. H. Rawal, J. Am. Chem. Soc., 1998, 120, 13 523; for total syntheses of tabersonine and other aspidosperma alkaloids, see: S. A. Kozmin, T. Iwama, Y. Huang and V. H. Rawal, J. Am. Chem. Soc., 2002, 124, 4628.
- 13 D. Strübing, H. Neumann, S. Klaus, S. Hübner and M. Beller, Org. Lett., 2005, 7, 4321.
- 14 D. Strübing, A. Kirschner, H. Neumann, S. Klaus, U. T. Bornscheuer and M. Beller, *Eur. J. Org. Chem.*, 2005, 11, 4210.
- 15 D. Strübing, A. Jacobi von Wangelin, H. Neumann, D. Gördes, S. Hübner, S. Klaus, A. Spannenberg and M. Beller, *Eur. J. Org. Chem.*, 2005, 107.
- 16 A. Jacobi von Wangelin, H. Neumann, D. Gördes, S. Hübner, C. Wendler, S. Klaus, D. Strübing, A. Spannenberg, H. Jiao, L. El Firdoussi, K. Thurow, N. Stoll and M. Beller, *Synthesis*, 2005, 2029.
- 17 D. Strübing, H. Neumann, S. Klaus, S. Hübner and M. Beller, *Tetrahedron*, 2005, **61**, 11 333; D. Strübing, H. Neumann, S. Klaus, S. Hübner and M. Beller, *Tetrahedron*, 2005, **61**, 11 345.
- 18 H. Neumann, A. Jacobi von Wangelin, S. Klaus, D. Strübing, D. Gördes and M. Beller, Angew. Chem., Int. Ed., 2003, 42, 4503.
- 19 H. Neumann, S. Klaus, M. Klawonn, D. Strübing, S. Hübner, D. Gördes, A. Jacobi von Wangelin, M. Lalk and M. Beller, Z. Naturforsch., 2004, 59b, 431.
- 20 M.-D. Chen, M.-Z. He, L.-Q. Huang, Y.-P. Ruan and P.-Q. Huang, *Chin. J. Chem.*, 2002, **20**, 1149; T. Nishio and H. Yamamoto, *J. Heterocycl. Chem.*, 1995, **32**, 883.
- 21 Data were collected with a STOE-IPDS diffractometer using graphitemonochromated Mo-Ka radiation. The structures were solved by direct methods (SHELXS-86: G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467); and refined by full-matrix least-squares techniques against F<sup>2</sup> (SHELXL-93: G. M. Sheldrick, SHELXL-93, University of Göttingen, Germany, 1993). XP (BRUKER AXS) was used for structure representations. Crystal data for 1a: space group  $P2_1/c$ , monoclinic,  $a = 14.365(3), b = 8.446(2), c = 12.304(2) \text{ Å}, \beta = 97.88(3)^{\circ}$ ,  $V = 1478.7(5) \text{ Å}^3$ , Z = 4,  $\rho_{\text{calc}} = 1.178 \text{ g cm}^{-3}$ , 3738 reflections measured, 2051 were independent of symmetry and 1608 were observed  $[I > 2\sigma(I)]$ ,  $R_1 = 0.065$ ,  $wR_2$  (all data) = 0.193, 182 parameters, CCDC reference number 292373. Crystal data for **2a**: space group  $P\overline{1}$ , triclinic, a =8.917(2), b = 8.949(2), c = 10.953(2) Å, a = 96.61(3),  $\beta = 97.73(3)$ ,  $\gamma =$ 99.99(3)°, V = 844.3(3) Å<sup>3</sup>, Z = 2,  $\rho_{calc} = 1.197$  g cm<sup>-3</sup>, 4524 reflections measured, 2510 were independent of symmetry and 1344 were observed  $[I > 2\sigma(I)], R_1 = 0.052, wR_2$  (all data) = 0.144, 205 parameters, CCDC reference number 292374. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b517101f.
- 22 L. R. Caswell and M. E. Goldsmith, J. Org. Chem., 1989, 54, 5101.
- 23 Organikum, 20. Auflage, Johann Ambrosius Barth Verlag, Hüthig GmbH, Heidelberg, Leipzig, 1996.